CS106B
Spring 2013

Handout #12S
April 24,2013

Section Solutions 3

Problem 1.

~
*

% ok ok ok ok % Ok Ok ok Ok ok Ok Ok F % ¥ Ok ok Ok F H F H O ¥ *

*/

Based on a handout by Eric Roberts

Weights and Balances

Function: isMeasurable
Usage: if (isMeasurable (target, weights)

Determines whether it is possible to measure the specified target
weight using some combination of the weights stored in the vector
weights. To do so, it recursively attacks the problem by considering
only the first weight in the array, which gives rise to the following
possibilities:
1. The first weight is unused. 1In this case, it is possible

to measure the target weight only if it is possible to do

so using the remaining weights.

2. The first weight goes on the opposite side of the balance

from the sample. 1In this case, the target weight is
effectively decreased by first, which means it can be
measured only if it is possible to measure target - first

ounces using the other weights.

3. The first weight goes on the same side of the balance
from the sample. 1In this case, the target weight is
effectively increased by first, which means it can be
measured only if it is possible to measure target + first
ounces using the other weights.

The simple case occurs when there are no weights at all, in
which case the target weight is measurable only if it is O.

bool isMeasurable (int target, Vector<int> & weights) {

if (weights.isEmpty()) {
return target == 0;

} else {
int first = weights[0];
Vector<int> rest = weights;

rest .removeAt (0) ;

return isMeasurable (target, rest)
| | isMeasurable (target - first, rest)
| | isMeasurable (target + first, rest);

Problem 2. Filling a Region

/*

* Function: fillRegion

* Usage: fillRegion(grid, row, col);

*

* This function paints black pixels everywhere inside the
*

region at the specified row and column.

*/

void fillRegion (Grid<bool> & pixels, int row, int col) {
if (pixels.inBounds (row, col) && !pixels[row][col]) {

pixels[row] [col] = true;

fillRegion(pixels, row + 1, col);
fillRegion(pixels, row - 1, col);
fillRegion(pixels, row, col + 1);
fillRegion(pixels, row, col - 1);

Problem 3. Generating Multiword Anagrams

~
*

Function: findAnagram
Usage: bool found = findAnagram(letters, english, words);

Finds a multiword anagram for the specified set of letters.
using only English words from the dictionary in english in
which each word must be at least MIN WORD characters long.

If the program finds any anagrams, it stores the list of words
in the vector words and returns true. If no anagrams exist,
the function returns false.

* % ok * X * H F *

*
~

bool findAnagram(string letters, Lexicon & english, Vector<string> & words) ({
return findAnagramWithFixedPrefix("", letters, english, words);

}

/*

* Function: findAnagram

* Usage: bool found = findAnagram(prefix, letters, english, words);
*

* Finds a multiword anagram for the specified set of letters, where
*

the current word must begin with the specified prefix.

*/

bool findAnagramWithFixedPrefix (string prefix, string rest,
Lexicon & english,
Vector<string> & words) ({

if (!english.containsPrefix(prefix)) return false;
if (english.contains (prefix) && prefix.length() >= MIN_WORD) {
if (rest == "" || findAnagram(rest, english, words)) {

words . add (prefix);
return true;
}
}
for (int i1 = 0; i < rest.length(); i++) {
string otherLetters = rest.substr (0, i) + rest.substr(i + 1);
if (findAnagramWithFixedPrefix (prefix + rest[i], otherLetters,
english, words)) return true;

}

return false;

